agrees with known results for a spherically blunted region [4, 5], The opposite effect occurs on the conical
part of the body for s/r > 1.8. Here, allowing for physicochemical processes results in an increase in the
coefficient of friction. The nonmonotonic variation of C¢ on the conical part of the body comes about because
for equilibrium air the singularity arising at the point where the sphere contacts the cone has a much stronger
effect than in the case y =1.4, Pr =0.72, ¢ ~+T. The change in the departure of the shock wave and in the
pressure on the surface of the body also become appreciably nonmonotonic [3]. We note that for hypersonic
flow around bodies with a surface of continuous curvature the coefficient of friction on the corresponding part
decreases monotonically [6, 7].

In Fig. 2 we show profiles of the velocity component u tangential to the surface of the body. It can be
seen that on different parts of the surface ofthebody, allowing for physicochemical processes can cause either
an increase or a decrease in the velocity gradient in the region near the wall. These results demonstrate the
need to allow for physicochemical processes when determining friction stresses on the surfaces of blunt bodies
in hypersonic flows.

NOTATION

g, distance measured from front critical point along surface of body; n, distance along normal directed
away from surface of body; Crs coefficient of friction; u, component of velocity tangential to surface of body;
Veos Poos velocity and density of unperturbed flow; r, radius of spherically blunted portion; Ty, surface tem-
perature of body; vy, ratio of specific heats; Pr, Prandtl number; u, viscosity.
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HEAT LIBERATION FROM A SPHERE MOVING
IN A VISCOUS LIQUID

Yu. I. Babenko UDC 536.24.01:517 .4

The method of [1] is used to solve the problem of heat liberation from a sphere moving in a
viscous liquid, where the velocity field is given by the Stokes solution [2].

1. Method of Solution. A method proposed previously [1] makes it possible to determine the nonstation-
ary temperature gradient on the boundary of a semiinfinite one-dimensional region without previous determina-
tion of the temperature field. In the present section we will describe the application of this method to nonsta-
tionary problems for a two-dimensional region.

We will consider the simplest case — the process of heating a semiinfinite lamina from its face:
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(i—ﬁ 62)7 0, i)

a  oxt oy
0Lx<Coo, —oo<TYy<C oo, 0<<Ef<C 00,
Tlieo = To(9, #); Thmw =0; Tjsmp = 0. (2)

It is required that the temperature gradient in the x direction be found at the end of the lamina, i.e.,
{dT/dx)x .

We write Eq. (1) in the form

V=2V -+ m)r=o @

Here the square root operator is defined such that

l/at ‘yT l/gt | zf(x’yd (; 'a;)f(x,y,t) @

for an arbitrary function f.

It can be directly verified that the property of Eq. (4) is fulfilled if the operator is defined by a formal

expansion of the root in 2 binomial series:
- L\ j&
—— 212
-V 7)o X (5)
— —n 6y2"
n=0 n ot

L
2

where

R _ 1 d o
P Ty j(t (@) dz, v< L

It develops that the solution of the equation

(l/ of 7 ;x)T o ©

formed by the right-hand factor in Eq. (3) can satisfy all conditions of Eq. (2), in 2 manner analogous to [1].
The right-hand factor gives solutions finite as x — =, while the left-hand term gives solutions finite as x —
—x , Therefore, writing Eq. (6) at x = 0, we obtain the desired solution in the form

0 0%
o ‘/_6!- ~ To(y, O (7

where the square root operator is defined by Eq. (5).

_or
dax

The solution of Eq, (7) coincides with the solution obtained by other methods, for example, with the aid
of integral transforms.

In similar manner, for a thermal-conductivity problem with variable coefficients, given the conditions
of Eq. (2), division of the operator into two factors may be performed in the form

\:"‘(l'—a(x: Y, t)"iﬁ’—ﬁ(’\’ Y, )_ai—]T

ot ax? F
{—n
" {1 ? i 172 d ]
= Lyt i, g -
[% g} mn’ (x y ) —2'1 aym ( ax
ot
n J—n
- Y 2 am , 3
X [E Eamn(x’ ) _'(21—~T — T ' (x, ¥, 1) -—:l T =0, (8)
n=0 m=0 sz Y ax
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where the functions @y, bmn can be found from a system of recurrent relationships in analogy to [1]. Writ-
ing the equation formed by the right-hand factor of Eq. (8) at x = 0, we obtain a solution of the problem in the
form of a series in fractional-order derivatives of the given function T (y, t).

By applying to the system of equations (8)-(12) a Fourier transform in y and a Laplace transform in t,
and performing averaging in the integrals, it can be shown that the validity of the method is determined by
the absolute convergence, uniform with respect to x, of the series in Eq. (8). General conditions for conver-
gence of the two-dimensional problem were not obtained.

The applicability of the method to problems for which convergence has not been established rests on the
following facts.

1. "Practical convergence" of the calculated series.
2. Validity of the final result for all problems which could be verified by other methods.

3. The validity of the method for the one-dimensional case, where ¢, §, ... in Eq. (8) are analytic
functions for-all x, t, and the derivatives dPa/dx™ do not increase "too rapidly" as n— <« [3].

Since the double series in Eq. (8) have a triangular coefficient matrix, the division of Eq. (8) can be
performed more economically by use of single series in fractional-order derivatives. To do this we introduce
the notation

2 Grn —a—m = Ly, \1 Boun a—m = M, @

The solution process will be described in detail below for a concrete example.

2. Nongtationary Heat Liberation from a Sphere Moving in a Viscous Liquid. In an infinite volume of
viscous liquid at temperature T = 0 a sphere of radius R moves in uniform rectilinear motion at velocity u.
Beginning at time t = 0 the sphere surface is heated by a known law T = Tg (¢, t). In a spherical coordinate
system attached to the sphere, heat transfer into the liquid will be described by the equation

2

ot op? 0 2  2°)| 3 o o0
_[cte®  p sind (l_i_,-l_n l?_}r=o,

p=1, >0, —oo<<h<Too;
Tlomt =T (8, % Tlpmw =0; Thoo=0;
o =r/R, ©=al/R? Pe=uRla. {10y
It is required that the radial temperature gradient at the sphere surface gg = (dT/dp) p=t be found.

We write the operator of Eq. (10) in the form of two cofactors, each of which depends only on the first
derivative with respect to p [1, 3]:

1—m l—m

oc‘ ak aT E] i ak \ 6_2_ 5 .
Mm 3 ﬂ\’ m T A E Ln ( y ﬁ', _— — T . 0 ( )
[}d:() (p aﬁ‘k ) a l—’——- ap ] p a’ﬁ'k ) 1—m + ap :I

2 n=0 \ 2 .

T ot

We will now define the operators My,, Ly. Multiplying the expressions in Eq. (11) and considering that (d¥/
d7¥) @¥/dTr) =dV*H/drV, v + 1 < 1, we compare the result with Eq. (10). Equating functions of derivatives
of one and the same order in 7, we obtain a system of recurrent relationships which define Mpm, Lyt

al/Z

W: M1+L130,
—(?—: Ml——le—i{—Pecosﬁ(l———?’— -+ R ;
dp 0 Y 20 207
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'a—_:M2+M1 L, ____1_ 17 _[ctgﬁ+Pesxnﬁ (1__3____1_ _0_;
p? 09 o? p 4p  4p* )| 08
9 o\
dp o2 My— L, =0;
LG oL
—niz 8 Myss pLp— —H-=0;
R b
_ntl
d a °* ‘
B L My —Lo=0,n>1;
2
ot (12)

® @ 8 4 5 0008 2 0D SO O BSOS sSSP E DO S e SN

Performing the operations of Eq. (12), it must be remembered that the operators obey rules stemming from
the properties of differentiation

G 9 oL

— L, =L,— +—2

o0 L) + i)

In accordance with the explanation of Section 1, we write the equation formed by the right-hand operator

in Eq. (11) at p =1, which gives the desired solution:

R ctg & a 1 F ! /2Ts
—qs= ——5— s ™ +—— —
dr 2 2 ] ot
—1
—3~Pecosﬁ+ ipesinﬁ_ C*gﬁ) 8 1 & T,
8 2 Ja 2 o8| o
[ Pecosﬁ—}-(——Pemm‘}———ctgﬁ__l_ c.osﬁ)i
8 sin®¢ ) 69
(Ctg2'ﬂ' __5 0% . ctgﬁ 98 _ _1___ ot 6‘3/27,3
3 ] 0* 4 09° 8 o9 | ov?
33 39 3 Pe 3
—| = Pecos®+ | —Pesin¢¢ — — —— —— cigd
[ T T( T 16 sne 2 °
2 2
___1~_ cosﬁ)_@_+(ipecosﬁ_ctg'& 1 __;_3_ F:
2 Sin3 'ﬁ' a‘ﬂ Y 8 2 Sirl2 ’ﬂ‘ 2 0‘&2
3 : 0 1 ¢ 19 sz
+(7 Pesin® —clg ) S — - aﬁ‘J pr (13)

The expression is useful for practical problems at 7 < 1.

It can be shown that at the points ¢ = 0, 7 a solution does not exist., In fact, for a function Tg(#, 7) infi~
nitely differentiable with respect to ¢, the singular terms standing before identical derivatives with respect
to T cancel each other. This may be verified by applying any operator Ly to cosm#. For the case where Tg(T)
is independent of #, from Eq. (12) we can obtain ‘

da'’r 3 d"l da*?T, 33 dT,
—_, = . —5 +Ts ———Pecosﬁ T, +— Pe cos © = _S'ns—ﬁpecosﬁ =
\ d7°T, (14)

2 gip? i ST
Pe? sin? & e

v

+ (—g—g Pe cos & -+ 278 Pe? cos® & -+

We find the mean radial gradient by integrating Eq. (14) over the sphere surface:

- aT, 63 _, d7°T,

s g T g T e T

NOTATION

a, thermal diffusivity of liquid; @mn, bmn, functions of coordinates and time; R, sphere radius; u,
velocity of motion; T, temperature; T,, temperature of end of lamina; Ts, temperature of sphere surface;
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x, ¥, Cartesian coordinates; r, 4, spherical coordinates; t, time; My, L;, auxiliary operators; dv/atv,
fractional differentiation operator; f, arbitrary function of argumem; z, auxiliary variable; p, dimensionless
radial coordinate; 7, dimensionless time; qq, dimensionless radial femperature gradient at sphere surface,
Pe, Peclet numbers; ¢, v, exponentiation and differentiation indices; m, n, p, summing indices.
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